

Module 1: Overview of soil fertility, plant nutrition, and nutrient management

To view the chapter for this topic click here.

Module 1: Overview

Introduction

- Understanding the principles of soil fertility is vital to
 - efficient nutrient management
 - profitable crop production
 - environmental protection
- Seventeen chemical elements are essential for plant growth:
 - o are needed in different amounts by the plant
 - vary in mobility within the plant
 - vary in concentration in harvested crop components
- Important aspects to know:
 - amount of each nutrient needed for optimum economic yield
 - amount removed by a crop with harvest
 - nutrient transformations within the soil
 - potential mobility of nutrients that might affect water quality

Essential plant elements

		Element	Source	Concentration
Non-mineral		Carbon (C)	Air	45%
		Oxygen (O)	Air/Water	45%
		Hydrogen (H)	Water	6%
	Primary Macronutrients	Nitrogen (N)	Air/Soil	1-5%
		Potassium (K)	Soil	0.5-1%
		Phosphorus (P)	Soil	0.1-0.5%
	Secondary Nutrients	Calcium (Ca)	Soil	0.2-1%
		Magnesium (Mg)	Soil	0.1-0.4%
		Sulfur (S)	Soil	0.1-0.4%
Mineral -	Micronutrients -	Chlorine (Cl)	Soil	0.01-0.1%
		Iron (Fe)	Soil	50-250ppm
		Manganese (Mn)	Soil	20-200ppm
		Boron (B)	Soil	6-60ppm
		Zinc (Zn)	Soil	25-150ppm
		Copper (Cu)	Soil	5-20ppm
		Molybdenum (Mo)	Soil	0.05-0.2ppm
		Nickel (Ni)	Soil	0.1-1ppm

Essential plant elements

- To be classified as essential, the element needs to meet the following criteria:
 - o the plant cannot complete its life cycle (seed to new seed) without it
 - o the element's function cannot be replaced by another element
 - o the element is directly involved in the plant's growth and reproduction

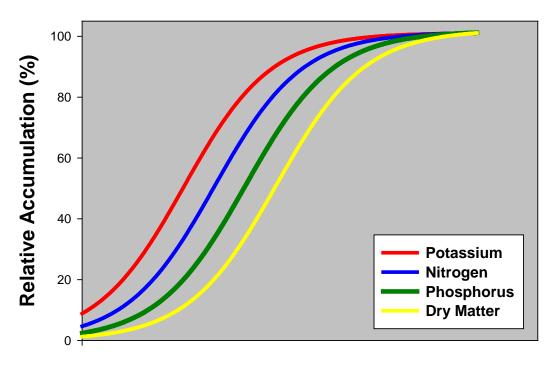
Plant uptake of nutrients

- Each nutrient is taken up in an 'ionic' or charged form.
- Knowing what form of a nutrient the plant absorbs helps us to better understand on what controls the cycling and movement of that nutrient in soil.
- Understanding nutrient functions and mobility within the plant are useful in diagnosing nutrient deficiencies.
- Nutrient uptake by roots is dependent on:
 - root growth and soil exploration
 - the ability to absorb nutrients
 - the nutrient concentration at the root surface
- Nutrients are in contact with roots by three mechanisms:
 - root interception
 - o diffusion
 - o mass flow

Plant Uptake of Nutrients

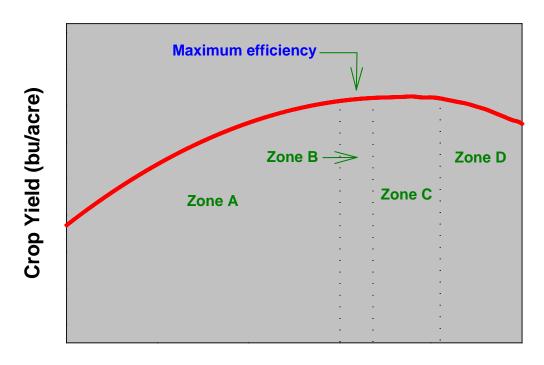
Element	Form	
Nitrogen (N)	NO ₃ - (nitrate), NH ₄ + (ammonium)	
Potassium (K)	K ⁺	
Phosphorus (P)	H ₂ PO ₄ -, HPO ₄ -2 (phosphate)	
Calcium (Ca)	Ca ⁺²	
Magnesium (Mg)	Mg ⁺²	
Sulfur (S)	SO ₄ -2 (sulfate)	
Chlorine (Cl)	Cl ⁻ (chloride)	
Iron (Fe)	Fe ⁺² (ferrous), Fe ⁺³ (ferric)	
Manganese (Mn)	Mn ⁺²	
Boron (B)	H ₃ BO ₃ (boric acid), H ₂ BO ₃ - (borate)	
Zinc (Zn)	Zn ⁺²	
Copper (Cu)	Cu ⁺²	
Molybdenum (Mo)	MoO ₄ -2 (molybdate)	
Nickel (Ni)	Ni ⁺²	

Nutrient Mobility within the Plant


Mobile nutrients	Immobile nutrients	
Nitrogen (N)	Sulfur (S)	
Phosphorus (P)	Calcium (Ca)	
Potassium (K)	Iron (Fe)	
Chloride (Cl)	Zinc (Zn)	
Magnesium (Mg)	Manganese (Mn)	
Molybdenum (Mo)	Boron (B)	
	Copper (Cu)	
	Nickel (Ni)	

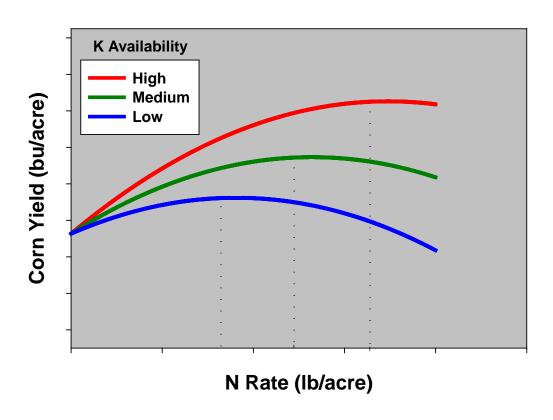
Timing of Nutrient Uptake by Plants

Days after emergence


Example: growing season accumulation patterns of K, N, P, and dry mater in corn.

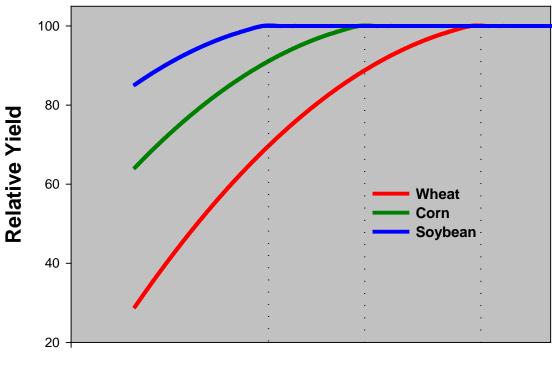
Crop Response to Nutrient Supply

Nutrient Rate (lb/acre)

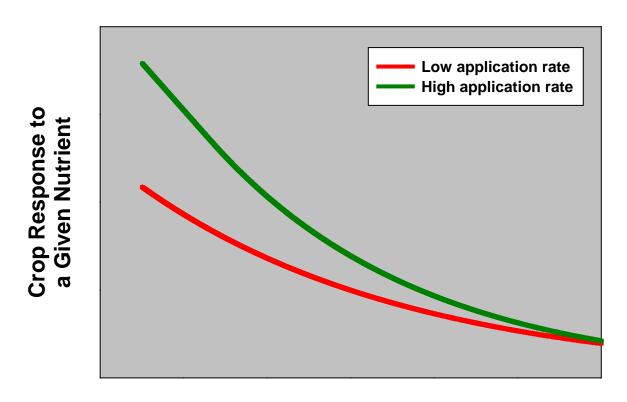

Relationship between crop yield and essential nutrient application rate.

Nutrient Interactions

Potassium improves yield response to N fertilizer and N use efficiency.



- Nutrient diagnostic methods are tools for determining plant nutrient needs:
 - soil testing
 - o plant analysis
 - crop canopy sensing
- The development of a diagnostic method for a given nutrient involves three steps:
 - selecting a soil or plant test or analysis or methodology that is related to a specific crop nutrition need or response to application
 - field correlation of test results with crop yield, amount of nutrient taken up by plants, and/or some other desirable crop characteristic
 - field calibrating the test result in terms of its effect on some desirable crop characteristic, such as yield response
 - developing sufficiency interpretations
- Fertilizer recommendations are then based on interpretation of test results from calibrated methods and fertilizer response trials.


Soil P Availability (ppm)

Different crop responses from different soil Bray-1 P levels.

Soil Nutrient Availability

Crop yield response to a low and high rate of a given nutrient as related to the original soil nutrient level.

Nutrient Index	Meaning of Index		
Level	Level for Crops		
	Applying the nutrient will be beneficial		
Very low	over 80% of the time		
Low	65% of the time		
Optimum	5% of the time		
High	less than <1% of the time		
Source: Iowa State University Extension publication PM 1688.			

Steps in Nutrient Management Planning

•	1. Obtain accurate	soil information for	or each field or ma	anagement unit within a fiel	d.
	1. Obtain accurate		di Gadii ildia di illa	anagement and within a ne	ш

 2. Estimate realistic crop yield potential based on soil productivity or yield mapping, crop rotation and intended management.

3. Calculate plant nutrient applications required.

4. Determine the plant-available nutrients in any livestock manure or other by-product amendments.

• 5. Estimate any applicable residual nutrient contributions from fertilizer or manure applied in previous seasons, or previous legume crop effects on soil N supply.

Steps in Nutrient Management Planning

• 7. If necessary, use an applicable environmental risk assessment tool (mainly for N and P).

• 8. Apply animal manure and commercial fertilizer to supply nutrients only when needed and using practices that ensure high use efficiency.

• 9. Keep records of nutrient sources, application dates, rates, and methods.

• 10. Remember that nutrient management plans need to be accurate, understandable, and defendable.